首页 排行 分类 完本 书单 专题 用户中心 原创专区
PT小说程序 > 历史传记 > 宋史 > 卷七十五·志第二十八·律历八

宋史 卷七十五·志第二十八·律历八

作者:脱脱 分类:历史传记 更新时间:2025-01-13 13:12:48 来源:本站原创

    ◎律历八   ○明天历   步晷漏术   二至限:一百八十一日六十二分。   一象度:九十一度三十一分。   消息法:一万六百八十九。   辰法:三千二百五十。   刻法:三百九十。   半辰法:一千六百二十五。   昏明刻分:九百七十五。   昏明:二刻一百九十五分。   冬至岳台晷景常数:一丈二尺八寸五分。   夏至岳台晷景常数:一尺五寸七分。   冬至后初限、夏至后末限:四十五日六十二分。   夏至后初限、冬至后末限:一百三十七日。   求岳台晷景入二至后日数:计入二至后来日数,以二至约余减之,仍加半日之分,即为入二至后来日午中积数及分。   求岳台晷景午中定数:置所求午中积数,如初限以下者为在初;已上者,覆减二至限,余为在末。其在冬至后初限、夏至后末限者,以入限日减一千九百三十七半,为泛差;仍以入限日分乘其日盈缩积,五因百约之,用减泛差,为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以减冬至常晷,余为其日午中晷景定数。若所求入冬至后末限、夏至后初限者,乃三约入限日分,以减四百八十五少,余为泛差;仍以盈缩差减极数,余者若在春分后、秋分前者,直以四约之,以加泛差,为定差;若春分前、秋分后者,以去二分日数及分乘之,满六百而一,以减泛差,余为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以加夏至常晷,即为其日午中晷景定数。   求每日消息定数:置所求日中日度分,如在二至限以下者为在息;以上者去之,余为在消。又视入消息度加一象以下者为在初;以上者,覆减二至限,余为在末。其初、末度自相乘,以一万乘而再折之,满消息法除之,为常数。乃副之,用减一千九百五十,余以乘其副,满八千六百五十除之,所得以加常数,为所求消息定数。   求每日黄道去极度及赤道内外度:置其日消息定数,以四因之,满三百二十五除之为度,不满,退除为分,所得,在春分后加六十七度三十一分,在秋分后减一百一十五度三十一分,即为所求日黄道去极度及分。以黄道去极度与一象度相减,余为赤道内、外度。若去极度少,为日在赤道内;若去极度多,为日在赤道外。   求每日晨昏分及日出入分:以其日消息定数,春分后加六千八百二十五,秋分后减一万七百二十五,余为所求日晨分;用减元法,余为昏分。以昏明分加晨分,为日出分;减昏分,为日入分。   求每日距中距子度及每更差度:置其日晨分,以七百乘之,满七万四千七百四十二除为度,不满,退除为分,命曰距子度;用减半周天,余为距中度。   求每日夜半定漏:置其日晨分,以刻法除之为刻,不满为分,即所求日夜半定漏。   求每日昼夜刻及日出入辰刻:倍夜半定漏,加五刻,为夜刻。用减一百刻,余为昼刻。以昏明刻加夜半定漏,满辰法除之为辰数,不满,刻法除之为刻,又不满,为刻分。命辰数从子正,算外,即日出辰刻;以昼刻加之,命如前,即日入辰刻。   求更点辰刻:倍夜半定漏,二十五而一,为点差刻;五因之,为更差刻。以昏明刻加日入辰刻,即甲夜辰刻;以更点差刻累加之,满辰刻及分去之,各得更点所入辰刻及分。   求昏晓及五更中星:置距中度,以其日昏后夜半赤道日度加而命之,即其日昏中星所格宿次,其昏中星便为初更中星;以每更差度加而命之,即乙夜所格中星;累加之,得逐更中星所格宿次。又倍距子度,加昏中星命之,即晓中星所格宿次。   求九服距差日:各于所在立表候之,若地在岳台北,测冬至后与岳台冬至晷景同者,累冬至后至其日,为距差日;若地在岳台南,测夏至后与岳台晷景同者,累夏至后至其日,为距差日。   求九服晷景:若地在岳台北冬至前后者,以冬至前后日数减距差日,为余日;以余日减一千九百三十七半,为泛差;依前术求之,以加岳台冬至晷景常数,为其地其日中晷常数。若冬至前后日多于距差日,乃减去距差日,余依前术求之,即得其地其日中晷常数。若地在岳台南夏至前后者,以夏至前后日数减距差日,为余日;乃三约之,以减四百八十五少,为泛差;依前术求之,以减岳台夏至晷景常数,即其地其日中晷常数。如夏至前后日数多于距差日,乃减岳台夏至常晷,余即晷在表南也。若夏至前后日多于距差日,即减去距差日,余依前术求之,各得其地其日中晷常数。   求九服所在昼夜漏刻:冬、夏二至各于所在下水漏,以定其地二至夜刻,乃相减,余为冬、夏至差刻。置岳台其日消息定数,以其地二至差刻乘之,如岳台二至差刻二十而一,所得,为其地其日消息定数。乃倍消息定数,满刻法约之为刻,不满为分,乃加减其地二至夜刻,为其地其日夜刻;用减一百刻,余为昼刻。   步月离术   转度母:八千一百一十二万。   转终分:二百九十八亿八千二百二十四万二千二百五十一。   朔差:二十一亿四千二百八十八万七千。   朔差:二十六度。   转法:一十亿八千四百四十七万三千。   会周:三百二十亿二千五百一十二万九千二百五十一。   转终:三百六十八度。   转终:二十七日。   中度:一百八十四度。   象度:九十二度。   月平行:十三度。   望差:一百九十七度。   弦差:九十八度。   日衰:一十八、小分九。   求月行入转度:以朔差乘所求积月,满转终分去之,不尽为转余。满转度母除为度,不满为余,即得所求月加时入转度及余。其入转度如在中度以下为月行在疾历;如在中度以上者,乃减去中度及余,为月入迟历。   求月行迟疾差度及定差:置所求月行入迟速度,如在象度以下为在初。以上,覆减中度,余为在末。置初、末度于上,列二百一度九分于下,以上减下,余以下乘上,为积数;满一千九百七十六除为度,不满,退除为分,命曰迟疾差度。以一万乘积数,满六千七百七十三半除之,为迟疾定差。   求朔弦望所直度下月行定分:置迟疾所入初、末度分,进一位,满七百三十九除之,用减一百二十七,余为衰差。乃以衰差疾初迟末减、迟初疾末加,皆加减平行度分,为其度所直月行定分。   求朔弦望定日:各以日躔盈缩、月行迟疾定差加减经朔、弦、望小余,满若不足,进退大余,命甲子,算外,各得定日日辰及余。若定朔干名与后朔干名同者月大,不同月小,月内无中气者为闰月。   求定朔弦望加时日度:置朔、弦、望中日及约分,以日躔盈缩度及分盈加缩减之,又以元法退除迟疾定差,疾加迟减之,余为其朔、弦、望加时定日。以天正冬至加时黄道日度加而命之,即所求朔、弦、望加时定日所在宿次。   求月行九道:凡合朔所交,冬在阴历,夏在阳历,月行青道。冬在阳历,夏在阴历,月行白道。春在阳历,秋在阴历,月行朱道。春在阴历,秋在阳历,月行黑道。四序离为八节,至阴阳之所交,皆与黄道相会,故月行九道。各视月所入正交积度,满象度及分去之余,若在半象以下为在初限。以上,覆减象度及分,为在末限。用减一百一十一度三十七分,余以所入初、末限度及分乘之,退位,半之,满百为度,不满为分,所得为月行与黄道差数。距半交后、正交前,以差数减;距正交后、半交前,以差数加。计去二至以来度数,乘黄道所差,九十而一,为月行与黄道差数。凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行宿度,入春分交后行阴历,秋分交后行阳历,皆为同名;若入春分交后行阳历,秋分交后行阴历,皆为异名。其在同名,以差数加者加之,减者减之;其在异名,以差数加者减之,减者加之。皆加减黄道宿积度,为九道宿积度;以前宿九道宿积度减其宿九道宿积度,余为其宿九道宿度及分。   求月行九道入交度:置其朔加时定日度,以其朔交初度及分减之,余为其朔加时月行入交度及余。以天正冬至加时黄道日度加而命之,即正交月离所在黄道宿度。   求正交加时月离九道宿度:以正交度及分减一百一十一度三十七分,余以正交度及分乘之,退一等,半之,满百为度,不满为分,所得,命曰定差。以定差加黄道宿度,计去冬、夏至以来度数,乘定差,九十而一,所得,依同异名加减之,满若不足,进退其度,命如前,即正交加时月离九道宿度及分。   求定朔弦望加时月离所在宿度:各置其日加时日躔所在,变从九道,循次相加。凡合朔加时,月行潜在日下,与太阳同度,是为加时月离宿次。各以弦、望度及分加其所当九道宿度,满宿次去之,各得加时九道月离宿次。   求定朔夜半入转:以所求经朔小余减其朔加时入转日余,为其经朔夜半入转。若定朔大余有进退者,亦进退转日,无进退则因经为定。   求次月定朔夜半入转:因定朔夜半入转,大月加二日,小月加一日,余、分皆加四千四百五十四,满转终日及约分去之,即次月定朔夜半入转;累加一日,去命如前,各得逐日夜半入转日及分。   求定朔弦望夜半月度:各置加时小余,以其日月行定分乘之,满元法而一为度,不满,退除为分,命曰加时度。以减其日加时月度,即各得所求夜半月度。   求晨昏月:以晨分乘其日月行定分,元法而一,为晨度;用减月行定分,余为昏度。各以晨昏度加夜半月度,即所求晨昏月所在宿度。   求朔弦望晨昏定程:各以其朔昏定月减上弦昏定月,余为朔后昏定程;以上弦昏定月减望昏定月,余为上弦后昏定程;以望晨定月减下弦晨定月,余为望后晨定程;以下弦晨定月减次朔晨定月,余为下弦后晨定程。   求转积度:计四七日月行定分,以日衰加减之,为逐日月行定程;乃自所入日计求定之,为其程转积度分。   求每日晨昏月:以转积度与晨昏定程相减,余以距后程日数除之,为日差。以加减每日月行定分,为每日转定度及分。以每日转定度及分加朔、弦、望晨昏月,满九道宿次去之,即为每日晨、昏月离所在宿度及分。已前月度,并依九道所推,以究算术之精微。若注历求其速要者,即依后术以推黄道月度。   求天正十一月定朔夜半平行月:以天正经朔小余乘平行度分,元法而一为度,不满,退除为分秒,所得,为经朔加时度。用减其朔中日,即经朔晨前夜半平行月积度。即为天正十一月定朔之日晨前夜半平行月积度及分。   求次月定朔之日夜半平行月:置天正定朔之日夜半平行月,大月加三十五度八十分六十一秒,小月加二十二度四十三分七十三秒半,满周天度分即去之,即每月定朔之晨前夜半平行月积度及分秒。   求定弦望夜半平行月、计弦、望距定朔日数,以乘平行度及分秒,以加其定朔夜半平行月积度及分秒,即定弦、望之日夜半平行月积度及分秒。   求天正定朔夜半入转度:置天正经朔小余,以平行月度及分乘之,满元法除为度,不满,退除为分秒,命为加时度;以减天正十一月经朔加时入转度及约分,余为天正十一月经朔夜半入转度及分。若定朔大余有进退者,亦进退平行度分,即为天正十一月定朔之日晨前夜半入转度及分秒。   求次月定朔及弦望夜半入转度:因天正十一月定朔夜半入转度分,大月加三十二度六十九分一十七秒,小月加十九度三十二分二十九秒半,即各得次月定朔夜半入转度及分。各以朔、弦、望相距日数乘平行度分以加之,满转终度及秒即去之,如在中度以下者为在疾;以上者去之,余为入迟历,即各得次朔、弦、望定日晨前夜半入转度及分。   求定朔弦望夜半定月:以定朔、弦、望夜半入转度分乘其度损益衰,以一万约之为分,百约之为秒,损益其度下迟疾度,为迟疾定度。乃以迟加疾减夜半平行月,为朔、弦、望夜半定月积度。以冬至加时黄道日度加而命之,即定朔、弦、望夜半月离所在宿次。   求朔弦望定程:各以朔、弦、望定月相减,余为定程。   求朔弦望转积度分:计四七日月行定分,以日衰加减之,为逐日月行定分;乃自所入日计之,为其程转积度分。   求每日月离宿次:各以其朔、弦、望定程与转积度相减,余为程差。以距后程日数除之,为日差。以日差加减月行定分。为每日月行定分;以每日月行定分累加定朔、弦、望夜半月在宿次,命之,即每日晨前夜半月离宿次。   步交会术   交度母:六百二十四万。   周天分:二十二亿七千九百二十万四百四十七。   朔差:九百九十万一千一百五十九。   朔差:一度、余三百六十六万一千一百五十九。   望差:空度、余四百九十五万五百七十九半。   半周天:一百八十二度。   日食限:一千四百六十四。   月食限:一千三百三十八。   盈初限缩末限:六十度八十七分半。   缩初限盈末限:一百二十一度七十五分。   求交初度:置所求积月,以朔差乘之,满周天分去之,不尽,覆减周天分,满交度母除之为度,不满为余,即得所求月交初度及余;以半周天加之,满周天去之,余为交中度及余。   求日月食甚小余及加时辰刻:以其朔、望月行迟疾定差疾加迟减经朔望小余,以一千三百三十七乘之,满其度所直月行定分除之,为月行差数;乃以日躔盈定差盈加缩减之,余为其朔、望食甚小余。置之,如前发敛加时术入之,即各得日、月食甚所在晨刻。   求朔望加时日月度:以其朔、望加时小余与经朔望小余相减,余以元法退收之,以加减其朔、望中日及约分,为其朔、望加时中日。乃以所入日升降分乘所入日约分,以一万约之,所得,随以损益其日下盈缩积,为盈缩定度;以盈加缩减加时中日,为其朔、望加时定日;望则更加半周天,为加时定月;以天正冬至加时黄道日度加而命之,即得所求朔、望加时日月所在宿度及分。   求朔望日月加时去交度分:置朔望日月加时定度与交初、交中度相减,余为去交度分。加时度多为后,少为前,即得其朔望去交前、后分。   求日食四正食差定数:置其朔加时定日,如半周天以下者为在盈。以上者去之,余为在缩。视之,如在初限以下者为在初。以上者,覆减二至限,余为在末。置初、末限度及分,置于上位,列二百四十三度半于下,以上减下,余以下乘上,以一百六乘之,满三千九十三除之,为东西食差泛数。用减五百八,余为南北食差泛数。其求南北食差定数者,乃视午前、后分,如四分法之一以下者覆减之,余以乘泛数。若以上者即去之,余以乘泛数,皆满九千七百五十除之,为南北食差定数。盈初缩末限者,缩初盈末限者,其求东西食差定数者,乃视午前、后分,如四分法之一以下者以乘泛数;以上者,覆减半法,余乘泛数,皆满九千七百五十除之,为东西食差定数。盈初缩末限者,缩初盈末限者,即得其朔四正食差加减定数。   求日月食去交定分:视其朔四正食差,加减定数,同名相从,异名相消,余为食差加减总数;以加减去交分,余为日食去交定分。其望食者,以其望去交分便为其望月食去交定分。   求日月食分:日食者,视去交定分,如食限三之一以下者倍之,类同阳历食分。以上者,覆减食限,余为阴历食分。皆进一位,满九百七十六除为大分,不满,退除为小分,命十为限,即日食之大、小分。月食者,视去交定分,如食限三之一以下者,食既;以上者,覆减食限。余进一位,满八百九十二除之为大分,不满,退除为小分,命十为限,即月食之大、小分。   求日食泛用刻分:置阴、阳历食分于上,列一千九百五十二于下,以上减下,余以乘上,满二百七十一除之,为日食泛用刻、分。   求月食泛用刻分:置去交定分,自相乘,交初以四百五十九除,交中以五百四十除之,所得,交初以减三千九百,交中以减三千三百一十五,余为月食泛用刻、分。   求日月食定用刻分:置日月食泛用刻、分,以一千三百三十七乘之,以所直度下月行定分除之,所得为日月食定用刻、分。   求日月食亏初复满时刻:以定用刻分减食甚小余,为亏初小余;加食甚,为复满小余;各满辰法为辰数,不尽,满刻法除之为刻数,不满为分。命辰数从子正,算外,即得亏初、复末辰、刻及分。   求日月食初亏复满方位:其日食在阳历者,初食西南,甚于正南,复于东南;日在阴历者,初食西北,甚于正北,复于东北。其食过八分者,皆初食正西,复于正东。其月食者,月在阴历,初食东南,甚于正南,复于西南;月在阳历,初食东北,甚于正北,复于西北。其食八分已上者,皆初食正东,复于正西。   求月食更点定法:倍其望晨分,五而一,为更法;又五而一,为点法。   求月食入更点:各置初亏、食甚、复满小余,如在晨分以下者加晨分,如在昏分以上者减去昏分,余以更法除之为更数,不满,以点法除之为点数。其更数命初更,算外,即各得所入更、点。   求月食既内外刻分:置月食去交分,覆减食限三之一,余列于上位;乃列三之二于下,以上减下,余以下乘上,以一百七十除之,所得,以定用刻分乘之,满泛用刻分除之,为月食既内刻分;用减定用刻分,余为既外刻、分。   求日月带食出入所见分数:视食甚小余在日出分以下者,为月见食甚、日不见食甚;以日出分减复满小余,若食甚小余在日出分已上者,为日见食甚、月不见食甚;以初亏小余减日出分,各为带食差;以乘所食之分,满定用刻分而一,即各为日带食出、月带食入所见之分。若食甚小余在日入分以下者,为日见食甚、月不见食甚;以日入分减复满小余,若食甚小余在日入分已上者,为月见食甚、日不见食甚;以初亏小余减日入分,各为带食差;以乘所食之分,满定用刻分而一,即各为日带食入、月带食出所见之分。   步五星术   木星终率:一千五百五十五万六千五百四。   终日:三百九十八日。   历差:六万一千七百五十。   见伏常度:一十四度。   火星终率:三千四十一万七千五百三十六。   终日:七百七十九日。   历差:六万一千二百四十。   见伏常度:一十八度。   土星终率:一千四百七十四万五千四百四十六。   终日:三百七十八。   历差:六万一千三百五十。   见伏常度:一十八度半。   金星终率:二千二百七十七万二千一百九十六。   终日:五百八十三日。   见伏常度:一十一度少。   水星终率:四百五十一万九千一百八十四。   终日:一百一十五日。   见伏常度:一十八度。   求五星天正冬至后诸段中积中星:置气积分,各以其星终率去之,不尽,覆减终率,余满元法为日,不满,退除为分,即天正冬至后其星平合中积。重列之为中星,因命为前一段之初,以诸段变日、变度累加减之,即为诸段中星。   求木火土三星入历:以其星历差乘积年,满周天分去之,不尽,以度母除之为度,不满,退除为分,命曰差度;以减其星平合中星,即为平合入历度分;以其星其段历度加之,满周天度分即去之,各得其星其段入历度分。   求木火土三星诸段盈缩定差:木、土二星,置其星其段入历度分,如半周天以下者为在盈。以上者,减去半周天,余为在缩。置盈缩度分,如在一象以下者为在初限。以上者,覆减半周天,余为在末限。置初、末限度及分于上,列半周天于下,以上减下,以下乘上,皆满百为分,分满百为度,命曰盈缩定差。其火星,置盈缩度分,如在初限以下者为在初。以上者,覆减半周天,余为在末。置初、末限度于上,列二百七十三度九十三分于下,以上减下,余以下乘上,以一十二乘之,满百为度,不满,百约为分,命曰盈缩定差。   求木火土三星留退差:置后退、后留盈缩泛差,各列其星盈缩极度于下,以上减下,余以下乘上,皆满百为度,命曰留退差。其留退差,在盈益减损加、在缩损减益加其段盈缩泛差,为后退、后留定差。   求五星诸段定积:各置其星其段中积,以其段盈缩定差盈加缩减之,即其星其段定积及分;以天正冬至大余及约分加之,满纪法去之,不尽,命甲子,算外,即得日辰。   求五星诸段所在月日:各置诸段定积,以天正闰日及约分加之,满朔策及分去之,为月数;不满,为入月以来日数及分。其月数命从天正十一月,算外,即其星其段入其月经朔日数及分。   求五星诸段加时定星:各置其星其段中星,以其段盈缩定差盈加缩减之,即五星诸段定星。若以天正冬至加时黄道日度加而命之,即其段加时定星所在宿次。   求五星诸段初日晨前夜半定星:木、火、土三星,以其星其段盈缩定差与次度下盈缩定差相减,余为其度损益差;以乘其段初行率,一百约之,所得,以加减其段初行率,以一百乘之,为初行积分;又置一百分,亦依其数加减之,以除初行积分,为初日定行分。以乘其段初日约分,以一百约之,顺减退加其段定星,为其段初日晨前夜半定星;以天正冬至加时黄道日度加而命之,即得所求。   求太阳盈缩度:各置其段定积,如二至限以下为在盈;以上者去之,余为在缩。又视入盈缩度,如一象以下者为在初;以上者,覆减二至限,余为在末。置初、末限度及分,如前日度术求之,即得所求。   求诸段日度率:以二段日晨相距为日率,又以二段夜半定星相减,余为其段度率及分。   求诸段平行分:各置其段度率及分,以其段日率除之,为其段平行分。   求诸段泛差:各以其段平行分与后段平行分相减,余为泛差;并前段泛差,四因之,退一等,为其段总差。   求诸段初末日行分:各半其段总差,加减其段平行分,为其段初、末日行分。   求诸段日差:减其段日率一,以除其段总差,为其段日差。   求每日晨前夜半星行宿次:置其段初日行分,以日差累损益之,为每日行分。以每日行分累加减其段初日晨前夜半宿次,命之,即每日星行宿次。   径求其日宿次:置所求日,减一,以乘日差,以加减初日行分,为所求日行分;乃加初日行分而半之,以所求日数乘之,为径求积度;以加减其段初日宿次,命之,即径求其日星宿次。   求五星定合定日:木、火、土三星,以其段初日行分减一百分,余以除其日太阳盈缩余为日,不满,退除为分,命曰距合差日及分。以差日及分减太阳盈缩分,余为距合差度。以差日、差度盈减缩加。金、水二星平合者,以百分减初日行分,余以除其日太阳盈缩余为日,不满,退除为分,命曰距合差日及分。以减太阳盈缩分,余为距合差度。以差日、差度盈加缩减。金、水星再合者,以初日行分加一百分,以除其日太阳盈缩分为日,不满,退除为分,命曰再合差日;以减太阳盈缩分,余为再合差度。以差日、差度盈加缩减。皆以加减定积,为再合定日。以天正冬至大余及约分加而命之,即得定合日辰。   求五星定见伏:木、火、土三星,各以其段初日行分减一百分,余以除其日太阳盈缩分为日,不满,退除为分,以盈减缩加。金、水二星夕见、晨伏者,以一百分减初日行分,余以除其日太阳盈缩分为日,不满,退除为分,以盈加缩减。其在晨见、夕伏者,以一百分加其段初日行分,以除其日太阳盈缩分为日,不满,退除为分,以盈减缩加。皆加减其段定积,为见、伏定日。以加冬至大余及约分,满纪法去之,命从甲子,算外,即得五星见、伏定日日辰。   琮又论历曰:"古今之历,必有术过于前人,而可以为万世之法者,乃为胜也。若一行为《大衍历》,议及略例,校正历世,以求历法强弱,为历家体要,得中平之数。刘焯悟日行有盈缩之差。李淳风悟定朔之法,并气朔、闰余,皆同一术。张子信悟月行有交道表里,五星有入气加减。宋何承天始悟测景以定气序。晋姜岌始悟以月食所冲之宿,为日所在之度。后汉刘洪作《乾象历》,始悟月行有迟疾数。宋祖冲之始悟岁差。唐徐升作《宣明历》,悟日食有气、刻差数。《明天历》悟日月会合为朔,所立日法,积年有自然之数,及立法推求晷景,知气节加时所在。后之造历者,莫不遵用焉。其疏谬之甚者,即苗守信之《乾元历》、马重绩之《调元历》、郭绍之《五纪历》也。大概无出于此矣。然造历者,皆须会日月之行,以为晦朔之数,验《春秋》日食,以明强弱。其于气序,则取验于《传》之南至。其日行盈缩、月行迟疾、五星加减、二曜食差、日宿月离、中星晷景、立数立法,悉本之于前语。然后较验,上自夏仲康五年九月"辰弗集于房",以至于今,其星辰气朔、日月交食等,使三千年间若应准绳。而有前有后、有亲有疏者,即为中平之数,乃可施于后世。其较验则依一行、孙思恭,取数多而不以少,得为亲密。较日月交食,若一分二刻以下为亲,二分四刻以下为近,三分五刻以上为远。以历注有食而天验无食,或天验有食而历注无食者为失。其较星度,则以差天二度以下为亲,三度以下为近,四度以上为远;其较晷景尺寸,以二分以下为亲,三分以下为近,四分以上为远。若较古而得数多,又近于今,兼立法、立数,得其理而通于本者为最也。"琮自谓善历,尝曰:"世之知历者甚少,近世独孙思恭为妙。"而思恭又尝推刘羲叟为知历焉。   《宋史》 元·脱脱等

目录
设置
设置
阅读主题
字体风格
雅黑 宋体 楷书 卡通
字体风格
适中 偏大 超大
保存设置
恢复默认
手机
手机阅读
扫码获取链接,使用浏览器打开
书架同步,随时随地,手机阅读
收藏
换源
听书
听书
发声
男声 女生 逍遥 软萌
语速
适中 超快
音量
适中
开始播放
推荐
反馈
章节报错
当前章节
报错内容
提交
加入收藏 < 上一章 章节列表 下一章 > 错误举报